Technology Review covers Stuart Kauffman‘s work to find a mathematical model for autocatalytic sets, the process by which life may emerge from molecules:

What makes the approach so powerful is that the mathematics does not depend on the nature of chemistry–it is substrate independent. So the building blocks in an autocatalytic set need not be molecules at all but any units that can manipulate other units in the required way.

These units can be complex entities in themselves. “Perhaps it is not too far-fetched to think, for example, of the collection of bacterial species in your gut (several hundreds of them) as one big autocatalytic set,” say Kauffman and co.

And they go even further. They point out that the economy is essentially the process of transforming raw materials into products such as hammers and spades that themselves facilitate further transformation of raw materials and so on. “Perhaps we can also view the economy as an (emergent) autocatalytic set, exhibiting some sort of functional closure,” they speculate.

Could it be that the same idea–the general theory of autocatalytic sets–can help explain the origin of life, the nature of emergence and provide a mathematical foundation for organisation in economics?

Full Story: MIT Technology Review: The Single Theory That Could Explain Emergence, Organisation And The Origin of Life

(via Social Physicist)

I find this very interesting, but don’t get too excited. These sorts of grand unification theories are extremely elusive. I’m also skeptical of these sorts of models which try to find universal rules for all types of systems.

See also:

Social Physics with Kyle Findlay

Guest Post: Some resources for thinking about systems